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Formation of a complex between a long polymer chain and several spherical particles with surface attractive 
adsorption layers is studied using scaling arguments. It is shown that if the spatial position of particles is 
fixed, the polymer chain in the complex becomes highly stretched. In this case the polymer is adsorbed 
on many particles and adopts an extended conformation; its dimensions substantially exceed those of a 
free coil. Complex formation (adsorption) is a first order phase transition. By contrast, if adsorption on 
mobile particles is considered, additional stretching vanishes and the dimensions of the adsorbed polymer 
chain are of the same order as those of a corresponding free coil. In this case adsorption of polymer 
macromolecule remains a first order phase transition. However, its features are similar to those of the 
second order phase transition, because the approach to the critical point of adsorption results in considerable 
swelling of adsorption layers of particles involved in the complex. 
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I N T R O D U C T I O N  

The interaction of colloidal particles and polymer chains 
has been studied using the methods of statistical physics 
of macromolecules 1-4. Investigations in this field are 
constantly stimulated by various applications to the 
problems of stabilization and aggregation of colloidal 
solutions. The topic of most of the studies 1-4 is the 
theoretical description of the process of complex formation 
of a single colloidal particle with several macromolecules 
from polymer solution. This approach can be used if the 
dimensions of colloidal particles substantially exceed 
those of the free polymer coil. Meanwhile, an opposing 
limiting case is possible, for example, if adsorption on 
protein molecules or micelles is considered. In this case 
the polymer chain is adsorbed on many particles 
simultaneously (Figure 1). Several problems associated 
with the theoretical treatment of such complexes have 
been discussed 5-9. In the present paper we perform simple 
analyses of these complexes using scaling arguments 9, 
and present some new results concerning the structure 
and properties of these complexes. 

We will also consider an analogous system which 
differs from the initial one (Figure 1) in only one respect: 
the particles are fixed in space. The study of properties 
of adsorption of a polymer chain in this system is not 
only of fundamental interest, but is also connected with 
some practical applications (for instance, the description 
of conformations of macromolecule in a gel with spatially 
distributed adsorbing centres). We will start our analysis 
with this latter problem, because this is a necessary step 
in solving the problem of mobile colloidal particles. 
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POLYMER CHAIN IN A SYSTEM OF 
FIXED PARTICLES 

Let us suppose that a polymer chain with degree of 
polymerization N and monomer link dimension ct is 
trapped in a system of immobile spherical particles of 
radius R (Figure 2); we assume that the particles are 
randomly distributed in space. Let c be the concentration 
of particles and 1 = c-  1/3 the average distance between 
them. We suppose that interactions of colloidal particles 
and monomer links are connected with the facts that 
links cannot penetrate inside particles (steric repulsion) 
and that each particle is surrounded by a thin attractive 
potential well of thickness ~ ~ cc Thus, if a monomer 
link is in this potential well, it acquires negative 
energy - A s = e - e * ,  where e * ~  Tct2/6 2 is the 
critical energy of adsorption on the plane (T  is the 
temperature). 

Let us consider the free energy, F, of the complex 
formed by the polymer chain and colloidal particles, 
assuming that the total number of particles attached to 
the chain is k (zero level of free energy is associated with 
unadsorbed state). According to standard scaling theory 9 
it is possible to write: 

F = F 1 + F 2 + F 3 + F 4 + F 5 ( 1 ) 

Here F1 ~ - At is the energy of a monomer link captured 
by potential wells of colloidal particles, F2 is the 
confinement energy of adsorbed chain associated with 
surface adsorption layers 9'1° of thickness A (Figure 2). 
We will assume that A << R, and this will be confirmed. 
Let Ns be the average number of monomer links inside 
the adsorption layer of each particle; in this case for the 
terms F1 and F2 one can write the following estimates 9 : 

~ N  FI ".~ - - k A e ~  g (2) 
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Figure 1 Complex of a polymer chain and k colloidal particles 

Figure 2 Polymer chain in a system of immobile colloidal particles 
with surface potential wells 

~2 

F 2 ,,~ k T N g  ~2 (3) 

Temperature T is taken in energy units here and below. 
To obtain exact expressions one has to multiply equations 
(2) and (3) by constants of order unity. We will imply 
this fact without indicating it explicitly, and with this in 
mind, instead of equations (2) and (3) we can write: 

6 N Fl  = - k  A~ ~ g 

~2 
F 2 = kTN~ A2 (4) 

The term F 3 in equation (1) accounts for excluded 
volume interactions of segments in adsorption layers. We 
suppose that the solvent for the polymer chain is good 
and polymer volume fraction in adsorption layers ~b is 
small (weak adsorption limit)9 ; the generalization of this 
theory for the case ~b ,-, 1 can be performed easily. Thus 
only the second term of virial expansion should be taken 
into account : 

F 3 ,,~ k T B  N2 (5) 
RZA 

since at A << R, the volume of the adsorption layer is of 
the order R2A, and B is the second virial coefficient of 
the interaction of links. For flexible chains in good solvent 
B ~ ~3, therefore, taking into account the arguments 
presented after equation (3) we find that: 

F3 = kT~ 3 N2 (6) 
R2A 

The term F 4 in equation (1) corresponds to the 
fragments of the chain between adsorption layers of 
neighbouring particles. We will show that in equilibrium 
these fragments are highly stretched; F4 is the free energy 
which accounts for this stretching. Let Nf be the average 
number of monomer links per fragment of the chain 
connecting neighbouring adsorption layers. Since the 
total number of links is N, the values of Ng and Nf are 
connected by the expression: 

kNg + ( k -  1)Nf = U (7) 

Obviously, the distance between the ends of the chain 
fragment consisting of Nf bonds is of the order of the 
distance I between neighbouring colloidal particles, thus 
we have: 

12 
F 4 -- ( k -  1 ) T - -  (8) 

Nf~ 2 

Equation (8) is valid if Nf~ )) l, but it should be modified 
if the limit of complete stretching (Nfa ~ l) is approached. 

Finally, the term F 5 is due to the fact that not only 
chain fragments between adsorption layers, but also the 
fragments within these layers (which are adsorbed on 
colloidal particles) can be stretched. This stretching can 
take place along the surface of the particles, and in 
complete analogy to equation (8) we write: 

R 2 
F 5 = k T - -  (9) 

Ng~ 2 

because the distance between the ends of the chain of N, 
segments is of the order R. It should be noted that if 
R 2 > Ng0~ 2, adsorbed chain does not completely cover 
the colloidal particles. 

Equations (1), (4), (6), (8) and (9) define completely 
the total free energy of the complex of polymer chain 
and k colloidal particles. In order to determine the 
structure of this complex one has to minimize the free 
energy F with respect to the parameters k, A, Nf  and Ng, 
taking into account the additional condition, equation 
(7) (therefore the total number of minimization para- 
meters is three). The results of this minimization are 
presented below. 

At high temperatures the free energy F is always 
positive, thus there is no adsorption of polymer chain on 
colloidal particles. As temperature decreases the complex 

2178 POLYMER, 1992, Volume 33, Number 10 



Polymer chain in colloidal solution: D. K. Klimov and A. R. Khokhlov 

is formed for the first time at: 
6 2 1 

T c ~ e  (10) 
ct 2 6 

l + - -  (eR) a/2 

Evidently, Tc is the temperature of capture of polymer 
chain by surface potential wells of colloidal particles. 

The formation of the complex is a first order phase 
transition ; at this point all conformational characteristics 
of the polymer molecule are changed dramatically. At the 
transition point T = T c parameters of the complex are: 

A ~ (otR) 1/2 

k ~ N(o~R)X/2c~1-2 (11) 

Ng ~ << Nf ~ k 

It can be seen that if R >> ct then ~ << A << R, i.e. the weak 
adsorption limit takes place and at the same time the 
thickness of adsorption layers is essentially smaller than 
R. At the transition point only a small fraction of polymer 
links are located in adsorption layers (Ng << Nf)  while 
the others remain in free fragments of the chain. 

The most unexpected result can be obtained if one 
calculates the radius of gyration (s  2 ) of adsorbed chain. 
Since fragments of the chain of Nf links that connect 
adsorption layers of colloidal particles are statistically 
independent, we get (Figure 2): 

( s  2) ~ kl 2 (12) 

At T = Tc this gives: 

( s 2 )  ( R ) ' / 2  >> 1 (13) 

(S2)o 
where (s  2) o ~ N"Z is the radius of gyration of a free 
chain. Thus, after adsorption the radius of gyration is 
not decreased (as one might expect), but is substantially 
increased. This result can be explained as follows: for a 
polymer chain in a complex it is preferable that the 
maximum possible fraction of links is located in surface 
potential wells of colloidal particles. But the 'capacity'  
of these wells is finite, thus the chain tends to adsorb on 
the maximum possible number of colloidal particles by 
stretching the chain fragments of Nf bonds between them. 
In fact, it is easily found that at T = To: 

12 R 2 /R '~1 /2  >> 1 
(14) 

NfGt 2 Ng~ 2 

i.e. the chain is highly stretched. It is due to the entropy 
loss associated with this stretching that the complex is 
destroyed at T = To. 

Now let us consider changes in conformation of 
adsorbed macromolecule as the temperature decreases 
(at T <  To). In the interval T'  < T <  T~ (the definition 
of T' is given below) parameters of the complex are: 

Am 
u 

R 2 
k ~ N u  3 (15) 

12 

R 2 N 
Ng ~ u ~ -  << Nf ~ --  

k 

R2 ( s2 )  u 3 (16) 
<$2>0 0~ 2 

R 4 R 2 
F _Nu6 + N u  2 (17) 
T ~ ~ 12 

where u - A e f / c t T  is a characteristic dimensionless ratio 
connected with the depth of surface potential wells of 
colloidal particles. It can be seen that the thickness of 
adsorption layers A becomes smaller as temperature 
decreases. At the same time the number of chain segments 
per adsorption layer Ng and the number of colloidal 
particles k in the complex is increased. Increase of k is 
associated with the fact that as temperature decreases it 
is more advantageous for monomer link to be located in 
an adsorption layer, therefore the chain tends to create 
new adsorption layers on the maximum possible number 
of colloidal particles. Due to essential chain stretching 
the radius of gyration of the macromolecule is increased 
in this process (as seen from equation (16)). 

The stretching of the chain, caused by including new 
colloidal particles in the complex terminates when 
temperature reaches the value 

6 2 1 
T '  

e ~ 2 1 +  R 

( u ' ~  (oil)liE~R). At T <  T'  we enter a new regime: in 
this case the number of segments in adsorption layers 
exceeds the number of segments in the fragments of the 
chain which connect these layers (Ng >> Nf). The charac- 
teristics of the complex are given by the following 
expressions : 

~g 

U 

0~3/2 
k ~ N  

RI1/z 
(18) 

l N 
Nf ~ - -  << Ng 

~u k 

(s2)o R 

i.e. the number of colloidal particles in the complex k 
and its radius of gyration remain constant in this 
temperature range. At the same time if the temperature 
is further lowered (below T ' )  the thickness of adsorption 
layers A is decreased and the stretching of the chain 
fragments that connect neighbouring adsorption layers 
is increased. At u ~ 1 we achieve the limit of complete 
stretching of these chain fragments. Simultaneously A 
becomes of the order of ~. Thus, for this case weak 
adsorption approximation can no longer be used. 

In conclusion, it should be noted that according to 
our analysis the term Fa, which describes excluded 
volume interactions in adsorption layers, is not essential 
in the entire temperature range. Thus, various modifi- 
cations of equation (6) (for instance, taking into account 
chain stretching along adsorption layers) do not change 
the results obtained above. 

POLYMER CHAIN IN A SYSTEM OF 
MOBILE PARTICLES 

We now consider a solution of colloidal, protein or 
micellar particles with surface adsorption potential wells. 
We keep the model of interactions adopted in the 
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previous section; the only essential difference is the fact 
that now the particles are not fixed and are free to move 
in space. We assume that the solution of particles in the 
absence of macromolecules is dilute, thus its chemical 
potential has the form: 

go = T in (cR3)  < 0 

Being adsorbed on k colloidal particles, the macro- 
molecule forms a complex with these particles (Figure 
1). It is evident that in principle all the contributions to 
the free energy F 1 - F  5 (see equations (4), (6), (8) and 
(9)) will still be present for this case. Additionally, the 
contribution 

F 6 = - k p  o (19) 

connected with the loss in translational entropy due to 
the incorporation of k independent particles in one 
complex, should be taken into account. 

The fact that the particles are now free to move 
essentially simplifies the analysis. First of all, one can 
argue that the chain fragments of Nf segments that 
connect neighbouring adsorption layers are absent 
(Nf = 0, Ng = N / k ) .  In fact, let us fix for a moment all 
colloidal particles in the system, i.e. let us return to the 
situation shown in Figure 2. Suppose now that we 
gradually decrease the average distance l between the 
particles of the complex. From equation (17) one can 
conclude that the free energy F will decrease in the course 
of this process. This means that there is attractive force 
between neighbouring particles involved in the complex 
(Figure 2) (this force is caused by stretching of the chains 
of Nf links that connect adsorption layers). If the particles 
are now free to move due to the presence of this force, 
they will approach each other up to direct contact of 
their adsorption layers (i.e. up to the situation shown in 
Figure 1). Thus highly stretched chain fragments of N f  

segments will disappear and the term F4 in the free energy 
is omitted. 

Another simplification is that for an equilibrium 
complex one can immediately write the following estimate 
for the number of particles k: 

0~ 2 
k ,-, N - -  (20) 

R 2 

Equation (20) means that the number of particles in the 
complex is such that adsorption layers completely cover 
colloidal particles and that the chains inside these layers 
are not stretched. Indeed, suppose that the equilibrium 
value of k exceeds Not2/R 2. From the analysis of 
equations (4), (6), (9) and (19) it is possible to conclude 
that this assumption leads to the loss of entropy 
associated with chain stretching (equation (9)) and with 
adsorption of additional particles (equation (19)). At the 
same time the reasons for such an increase in k being 
favourable, from the point of view of the free energy, are 
absent. Let us suppose now that k < No~2/R2; in this 
case a small gain of entropy is achieved which is 
connected with translational entropy of colloidal particles. 
However, a more considerable loss of free energy takes 
place which is due to the growth of excluded volume 
effects in adsorption layers (equation (6)). Therefore, 
equation (20) provides the equilibrium value of k. 

The estimate (20) can also be formally obtained by 
minimization of the free energy defined by equations (10), 
(4), (6), (9) and (19) if one takes into account that the 

R. Khokhlov 

free energy of volume interactions can be written in the 
form of equation (6) only if Ng~ 2 > R 2. If N ~  2 << R 2, 
i.e. for highly stretched chains, the term F 3 drops more 
quickly than according to equation (6) (equation (6) 
is written in the mean field approximation1°). The 
estimate obtained on the basis of scaling treatment 
indicates that a t  Ns~x 2 << R 2 the term F a in free energy 
of the complex can be neglected. 

Equation (20) is crucial for the proper understanding 
of equilibrium structure of the complex. A priori, the 
'necklace' structure shown in Figure 1 is not the only 
possible structure. An alternative hypothetical variant 
corresponds to the case where a polymer chain visits the 
adsorption layer of a given particle several times. The 
arguments presented above are useful in explaining why 
this situation is less favourable. First, for the structure 
involving several visits of a polymer chain to a given 
adsorption layer, some parts of the chain are subjected 
to essential stretching (note that if polymer chain enters 
a given adsorption layer several times the number of 
segments of each of these fragments is substantially less 
than N / k ) .  This leads to considerable loss in entropy. 
Finally, chain conformation in the case of many returns 
to a given adsorption layer is more compact, thus free 
energy of excluded volume repulsion in this case is larger. 

To calculate the thickness of adsorption layers A in 
equilibrium one now has to substitute equation (20) into 
the expression for F and perform minimization of this 
expression with respect to A. The result does not depend 
on #o and R and has the form: 

cx 
A ~ (21) 

u - - 1  

where u -  A~3/~T. Obviously, equation (20) makes 
sense only if the denominator is positive, i.e. for low 
enough temperature : T < T*, where 

62 1 
T *  

"~ ~0~ 2 
1 +  

~x 

As the temperature approaches T*, the thickness A is 
proportional to z - l ,  where ~ = ( T - T * ) / T * .  This 
behaviour is characteristic for the thickness of adsorption 
layer in the course of the approach to the adsorption 
point 1°. 

However, due to the existence of the term F 6 > 0 in 
free energy the complex is destroyed at a temperature 
somewhat below T*. Free energy of the complex becomes 
zero at Ttr < T* (recall that at T* the sum F1 + F2 + 
F 3 = 0 ) :  

62 I 
T,r ,-, ~ (22) 

0~2 + 3-- 11/2 1 [In cR 3 + - 

R 

It is easy to understand that the formation of a complex 
is a first order phase transition. At T = Tit the value of 
A is equal to R lln cR3[ - 1/2. Therefore, at the transition 
point, A ( R ,  and the thickness of adsorption layers is 
decreased with decrease in the concentration of the 
solution of colloidal particles. When the temperature is 
further lowered the value of A is diminished and finally we 
abandon the weak adsorption regime. Thus to describe 
excluded volume effects in adsorption layers it becomes 
necessary to take into account the next terms in the virial 
expansion. 
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Although phase transition (formation of the complex) 
is of the first order, it can be close to second order phase 
transition if the parameter (6/R)l ln cRal 1/2 is small. In 
fact, in this case Ttr is close to T* (see equation (21)) 
and one can conclude that as the temperature approaches 
Tt,, essential swelling of adsorption layers should be 
observed. This situation is typical for second order 
adsorption phase transitions in the usual cases ~°. 

An important characteristic of the complex which can 
be experimentally measured is its radius of gyration (s 2 ). 
According to Figure 1 : 

( S  2 ) ~ k R  2 (23) 

Taking into account equation (20) the result is: 

(S  2 )  ~ No~ 2 (24) 

i.e. the radius of gyration of the macromolecule in the 
complex is of the same order as that of a free chain. 
Equations (23) and (24) need to be somewhat modified 
if some violations of Gaussian statistics of polymer chain 
due to the excluded volume effects are taken into account. 
However, the basic result remains the same: formation 

of the complex is not accompanied by significant changes 
of dimensions of polymer chain. This fact has indeed 
been experimentally observed for situations similar to 
that studied in the present paper 11. Thus the theory 
presented above provides a natural explanation for this 
fact. 
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